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It is shown that the Galerkin-Petrov method if applied in a controlled way 
yields reliable results for excited states of the same symmetry classifications 
as the ground state. Computations are performed for the 2as and 3~S states 
of He. The problem of optimizing nonlinear parameters of the basis functions 
by means of the GP method is discussed. A special optimization scheme is 
suggested and numerically illustrated for some S states of He. 
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1. Introduction 

The Galerkin-Petrov (GP) method of approximately solving the Schr6dinger 
equation offers the attractive possibility of considerable simplification of the 
integral problem which hampers the application of many variational approaches 
to more complex atoms and molecules. In our recent paper ([1], hereafter referred 
to as I) we have presented a convergence characterization of the GP method by 
means of quantities describing pairs of subspaces used in the procedure. We have 
also demonstrated for the ground states of the He [1] and Be [2] atoms the 
usefulness of our approach for setting up reliable computational schemes. 

All applications of the GP method to quantum chemical problems have been 
concerned with the ground state only. The only attempt of studying excited states 
was undertaken by Bangudu et  al. [3] in the case of the quartic oscillator. To get a 
more complete idea about the applicability of the GP method to quantum chemical 
problems we would like to consider the problem of determination of excited-states 
wavefunctions and energy levels in the case of states which belong to the same 
symmetry classification as the ground state. We have chosen as the object of our 
study the 2~S and 3~S states of the helium atom. 
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Let us now proceed to another problem. It is a well known fact that variational 
methods of determining approximate solutions for excited states of many-electron 
systems face convergence problems (cf. Ref. [4-[). Therefore it is of importance to 
use sets of basis functions that are well suited for the description of the state under 
consideration. Standard strategies for obtaining such basis sets involve the intro- 
duction of nonlinear parameters into the basis functions and minimization of the 
proper root of the secular equation with respect to these parameters. 

The problem of optimization of nonlinear parameters of the basis functions 
defining the projective and coordinate subspaces [1] has not been discussed in the 
literature so far. This task is much more complicated in the case of the GP method 
than in the variational procedure. This situation is due to the fact that consecutive 
roots of the non-symmetric secular equation do not disclose the upper bound 
character in relation to appropriate exact eigenvalues of the Hamiltonian. It seems 
to us, however, that the optimization problem is not an insurmountable one 
provided that the optimization procedure involves somehow both subspaces 
under consideration. The second aim of this paper is to suggest an optimization 
scheme and to demonstrate its applicability by considering the three lowest 1S 
states of the helium atom. 

2. Theory 

Details needed in applying the GP technique to quantum chemical problems may 
be found in paper I of this series [1]. 

Let us denote by E~' the GP energy corresponding to the i'th eigenvalue of the 
Schr6dinger equation, and by Ej its variational counterpart belonging to the 
approximate wavefunction ~i obtained by means of the coordinate basis set [1]. 
It was shown in I that the following estimate may be given 

IE; - E';l  I I ( H  - Ei)6oilID (2.1) 

where 

R<~D<~x/n R, (2.2) 

and 

( ~ i  = ~ i  --  yitIli '  7i = ( t t l i '  C1-)i)" 

Here Ti denotes the exact eigenfunction, and R characterizes the distance between 
the coordinate and projective subspaces [1]. 

In papers I and II we have used the relation (2.1) to set up strategies for the reliabte 
determination of wavefunctions and energies, corresponding to the ground state 
of two- and four-electron systems by means of the GP method. It should be 
emphasized, however, that this relation holds for all eigenstates of the Hamiltonian 
including excited states of the same symmetry classification as the ground state. 
Therefore the methods which proved useful in obtaining reliable results for the 
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ground state should work as well for the excited states. A demonstration of  this 
fact is given in Sect. 3. 

We now proceed to the problem of optimizing nonlinear parameters. Let us 
consider the variational energy obtained for the n-dimensional coordinate basis 
set. Let us denote this energy by E~'(~/), where ~/stands for the set of  nonlinear 
parameters of  the basis set. Let us further assume that both the coordinate and 
projective subspaces depend on the same set of  parameters. Hence, the GP 
energies as well as the indices characterizing the distance between the subspaces 
are functions of  0, i.e., we have Ei"(0), D(f/) and R(V/). Let us denote by ~0 the point 
in the parameter space corresponding to the minimum of the variational energy. 
Relation (2.1) may be rewritten as 

IE~'(g/o) - E'i'(g/o)l ~< II (H - Ei)~5~z(g/o)[I D(g/o) �9 (2.3) 

We further assume that 1) II(H - E~)b~(f/o)llD(f/o ) is sufficiently small and 2) the 
value of  this expression is almost constant in the neighbourhood of  f/o. If  so, the 
relation (2.3) leads to the conclusion that there exists a minimum of the GP energy 
and it is situated in the vicinity of  0o. 

We can take advantage of this consideration in setting up the GP optimization 
procedure. In order to be successful one should fulfil the two assumptions. To 
satisfy the first condition, the coordinate basis set should allow for a relatively 
good approximation of  the exact wavefunction (small I t(H - Ei)(~gpill) and the 
projective basis set should be as close as possible to the coordinate one (small D). 
To fulfil the second condition, the parametrization scheme should be chosen 
appropriately to assure the almost,constancy of  D. We will demonstrate in Sect. 4 
that one can practically satisfy all the demands just mentioned. 

3. Excited States of He 

Let us introduce the Coolidge-James [5] functions: 

u(nl, li, mi; ~, 7),= 
(4'  r~ exp (-0~r t - 7r2)-k-rt~ r~' exp ( - T r  t - ~r2))r]'~, (3.1) 

where hi, li, m i are non-negative integers and ~, 7 are positive, real parameters. 
These functions were also used in the work of Perkins [6]. The first part of  this 
section deals with the calculation of  the energy of  the 21S state by means of  a 
coordinate space generated by the very effective set of Perkin's correlated basis 
functions. Later on we report the results of our calculations for the 21S and 3~S 
states using a basis set comprising linear parameters optimized within the frame- 
work of  the GP method. 

3.1.  P e r k i n s - L i k e  Bas i s  S e t  
Our coordinate basis functions are defined by Eq. (3.1) and the following set of  
(n 1 m)powers.  

(100), (010), (110), (020), (001), (101), 
(001), (000)*, (100)*, (010)*, (001)*, (120), (3.2) 
(201), (021), (110), (101), (011), (111), 
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The nonlinear parameters c~=2.06 and 7=0.592 have been used for all cases 
without an asterisk, whereas for the remaining functions the parameters c~ = 2.06 
and 7* = 1.37 have been employed. This basis set is a part of the very effective 
Perkins basis. It is obtained from the latter one by deleting all functions with 
m~>~2. 

We define the projective subspace by means of a configuration interaction basis 
which has been obtained from the coordinate basis set by making the replacement: 
(n 1 m)-~ (n, 1, 2m). We have found in I that this procedure leads to pairs of  
close subspaces. 

Results of  our He 2 ~S calculations are shown in Table 1. The GP energies approach 

n -E~ -E~ -E2v R 

4 2.11825 2.11825 2.11825 0 
11 2.14572 2.14589 a 2.14496 3.72 
18 2.14579 2.14591 2.14548 1.53 

Table 1. GP-energies E', variational energies 
E', Ep and R values for the 21S state of He in 
the case of the Perkins-like basis set 

" Result of Perkins [6]. 

the ~'exact" non-relativistic energy -2.14597402 [7] as the number of basis 
functions, n, increases. The variational energies E 2 and Ezp obtained for the 
coordinate and projective subspaces, respectively, are also listed. The results 
shown in Table 1 are in agreement with the conclusions of our general analysis 
presented in Sect. 2. 

3.2. GP-Optimized Basis Set 

In this calculation we have used the basis sets with nonlinear parameters optimized 
in Sect. 4 within the framework of the GP method. The coordinate basis sets 
comprise functions of the form (3.1) for which m ~< 1 and n ~< 1. The projective basis 
sets are obtained by means of  the replacement m --+ 2m from the coordinate sets. 
The nonlinear parameter c~ has a fixed value c~ = 2, whereas the optimized values 
7=0.707 and y=0.364 have been taken for treating the states 21S and 31S re- 
spectively. The coordinate basis functions have been grouped and ordered 
according to the value of the sum k = 1 + m + n. Calculations have been performed 
for several basis sets comprising each time all groups characterized by k values not 
exceeding a given integer. The dimensions of the respective subspaces are n = 3, 6, 
10, 15, 21 and 28. 

The results for the 21S and 31S states of the He atom are collected in Table 2. 
The GP-energies, E~, for both states exhibit systematic n-convergence towards 
the "exact" non-relativistic results [-7] E ( 2 1 S ) = - 2 . 1 4 5 9 7 4  and E(31S)=  
-2.061272 respectively. Also of interest is the fact that for n -- 15, 21, 28 in the 
case of 2aS and n = 21, 28 in the case of 31S the GP results are closer to the ~'exact" 
energies than the variational energies, El, obtained for the coordinate basis sets. 
The variational energies E i and Eip reflect the convergence problems mentioned 
in Sect. 1. This is especially true for the 3~S state where the results for n =  3 are 
useless, and the energy obtained for n =6,  when correlated basis functions are 
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Table 2. GP-energies E',  variational energies E', Ep and R values for the 2IS and 
3 ~S states of He 

123 

State n 

3 6 10 15 21 28 

21S 

3zS 

R 1.10 2.28 4.07 5.56 5.74 5.81 
- E ;  2.128191 2.143193 2.145378 2.145689 2.145855 2.145909 
-Ezp 2.131156 2.142847 2.144231 2.144806 2.145052 2.145302 
-E~  2.127817 2.143359 2.144880 2.145822 2.145974 2.145987 

R 1.93 3.36 5.65 9.28 16 38.7 
-E~  0.997707 2.060397 2.060536 2.060755 2.060920 2.061038 
-E3p 1.718217 2.060465 2.060523 2.060626 2.060684 2.060742 
-E~  0.525849 2.060417 2.060527 2.060751 2.060966 2.061166 

used. E~, is less accurate than for the uncorrelated projective basis set E3p. How- 
ever, the general character of the results is the same as in the case of the ground 
state, as discussed in I. The GP energies obtained for both excited states, together 
with the variational energies E'I, provide a convincing illustration of the relation 
(2.1). 

4. Optimization of Nonlinear Parameters for S States of He 

The fact that the GP procedure involves two basis sets leads to a variety of possi- 
bilities of introducing nonlinear parameters which have to be optimized. We 
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Fig. 1. GP energy E~', variational energies E~, E l p  , and index R as a function of the nonlinear parameter 
q for the 1 ~S state 
Fig. 2. GP energy E~, variational energies E;, E2p , and index R as a function of the nonlinear para- 
meter q for the 2~S state 
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Fig. 3. GP energy E3, variational 
energies El,  E3v, and index R as a 
function of  the nonlinear parameter  r/ 
for the 3~S state 

assume that both the projective as well as the coordinate basis sets depend on 
nonlinear parameters. 

Let us define the two basis sets by means of the Coolidge-James functions (3.1). 
To simplify the discussion we assume a constant value ct = 2 for one of the nonlinear 
parameters. Now, the coordinate basis sets consist of functions of the form 
u(ni, Ii, mi; 2, 7) where rn i ~< 1 and n i ~< l i . 

It is our task to optimize within the framework of the GP method the nonlinear 
parameter 7 for the three lowest S states of He. We tried to make use of the dis- 
cussion presented in Sect. 2. To fulfil the first condition we have searched for the 
optimal value in the case of a 10 term coordinate basis set (small ql(H-E~) 6~0/IL). 
Furthermore, to reduce the value of the R indices the projective basis has been 
constructed by means of the projection procedure using a 28 term basis set of the 
form u(n~, Ii, 2m~; 2, 7). To fulfil partially the second condition we have used the 
parametrization scheme 3c mentioned above. 

The results of our calculations are displayed in Figs. 1-3. We can see that the GP 
energies possess minima in all cases. Furthermore, the values corresponding to 
these minima are very close to the values of that parameter corresponding to the 
minima of the variational energies E[ and Eip obtained in the case of the coordinate 
and projective basis sets respectively. Figs. 1 and 2 show that for the 11S and 21S 
states the energy curves of E'~', E~ and Eip vs. ~ are almost parallel. The situation 
is somewhat more complicated in the case of the 31S state where the curves inter- 
sect. It is interesting that the R values depend only very slightly on the values of 
the parameters, which may be the reason of our success. 

The optimal values of the parameters are: 

7(11S)=1.94, 7(21S)=0.707 and y(31S)=0.364. 

The two latter parameters have been used in our computations reported in Sect. 3.2. 
The optimal parameter for the ground state also leads to n-convergent GP energies, 
e.g., we obtained the results -2.90050, -2.90232, -2.90266 and -2.90273 a.u. 
for n =  6, 10, 21 and 28 respectively. The result for n =  28 may be compared with 
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the variational energies -2.90347 and -2.89991 obtained for the coordinate and 
projective basis sets respectively. 

5. Concluding Remarks 

We have here illustrated that our strategy for the reliable determination of wave- 
functions and energies by means of the GP method works well in the case of 
excited states of the same symmetry classification as the ground state. The GP 
energies for the excited states disclosed similar behaviour as has been observed 
previously [1] for the ground state. 

We have also presented a scheme for optimizing nonlinear parameters within the 
framework of the GP method, and have applied it with success in the case of some 
He atom S states. We would like to emphasize that our study is only meant as a first 
sketch which leaves room for many improvements. We hope that the present 
work will spur other workers to further investigate the crucial nonlinear parameter 
problem. 
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